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Introduction:

Calcium and copper are both metals; Ca has a valence of +2 (2 electrons per atom)
while Cu has a valence of +1 (1 electron per atom).  Simply on the basis of numbers of
charge carriers per unit volume, we might expect Ca to be a better conductor of
electricity.  However, this is not the case.  Why then is Cu, with half as many valence
electrons per atom, a far better electrical conductor than Ca?  We will see that the
answer lies in the nature of the electronic energy levels (or bands) that form when
individual atoms coalesce into a solid.  This energy band structure approach also
describes the electrical behavior of semiconductors, one of the most technologically
significant materials in the last 50 years.  We begin with a review of some of the
fundamental concepts such as Ohm’s law and the nature of energy bands in solids.
We will also see how solid solution alloying in metals can have a major impact on the
motion of conduction electrons in the resulting alloy, in much the same way as solid
solution strengthening affects dislocation motion.
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Introduction

Electrical conductivity:

Did you know that electrical
conductivity spans a greater range of
values than any other material
property?  From insulators such as talc
and sulfur on one extreme to highly
conducting metals such as silver and
copper and at the other extreme, this
property spans over 20 orders of
magnitude!!!

Why is the propagation of electrical
current so easy in some materials while
almost non-existent in others?
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Definitions

Electrical conductivity:
“a quantitative measure of the ease with which electrical current is propagated in
a material in response to an external electric field”

Suppose we place a material in an electric field, of magnitude E.  In response to
the applied field, charge carriers in the material will drift, or diffuse, down the 
field gradient.

Empirically, we find that for any given material, the ratio of current density to 
applied field at constant temperature is a constant, called the electrical 
conductivity, σ (sigma)

σ is a fundamental material property and varies with temperature

The reciprocal of σ is called the electrical resistivity, and is abbreviated as
ρ (rho)
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Macroscopic conductivity - Ohm’s law

Ohm’s law:
The relationship between applied electric field and current density is
more commonly known as Ohm’s law:

J = σE = σ(dV/dx)

although you may be more familiar with another form of Ohm’s law:
I = (1/R)V

where “I” is the electrical current, “V” is the voltage drop, and R is the
electrical resistance (not resistivity in this equation).

Current density can also be written as J = nev, where n is the density
of current carriers, v is their drift velocity, and e is the charge of an
electron, or 1.6x10-19 coulomb.

Units of conductivity are (Ohm-m)-1, although (mOhm-m)-1, and
(mOhm-cm)-1 are also frequently used.  “Ohm” is given a special
symbol: Ω (Omega)
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Macroscopic conductivity - Ohm’s law

Ohm’s law:
What is the relationship between conductivity, σ, (or resistivity, ρ) and
resistance, R?

Resistance depends on the geometry of a material and is NOT a
fundamental material property.

Conductivity (or resistivity) does NOT depend on the size or shape of a
material and IS a fundamental material property.

R = V/I

ρ = R(A/l), so ρ = (V/I)(A/l)

so, σ = 1/ρ

(the geometrical factor, A/l, accounts
for the fact that resistance
depends on cross sectional area
and on length)
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Electron propagation

Energy bands:

In order to understand how materials carry electrical current, we must look first
at the allowed energy states for electrons, and how these allowed states are formed.
We will use a metal to illustrate the point, but the basic argument applies equally
well to any material.

Recall that an isolated atom is characterized by a set of discrete energy shells, 
or orbitals, within which the electrons are constrained.  

As shown at right,
there are actually
three states
corresponding to
the 2p subshell.



Lecture 25 -- Electrical properties of materials

Electron propagation

Energy bands:

When individual atoms come together to form a solid, these energy states split into
discrete levels*, in accordance with the Pauli exclusion principle.  If not for the
splitting, there would be too many electrons trying to occupy too few energy levels.
The splitting and coalescence of energy states is a consequence of the interaction
between each atom’s wavefunction.

Notice how the discrete energy
shells each split into bands.
This example corresponds to a
hypothetical situation in which
12 atoms coalesce, hence 12
bands for each quantum state.

Imagine if we had 1023 atoms
coming together, the number of
bands would be immense and
the energy spacing between
them would be exceedingly
small (but not continuous).

* If there is one state per energy level, such as the
1s or 2s, there will be N bands.  If there are 3 states
per level, such as the 2p, then there will be 3N bands,
and so on.
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Electron propagation

Energy bands:

Note the presence of gaps
between energy bands, and that
the ground state is not split at
the equilibrium atomic
separation distance.

Electrons cannot occupy energy levels within the gaps

This is not a continuum of energy levels; this
actually represents a huge number of discrete
levels, each separated by a very small energy (~ kT)
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Electron propagation

Energy bands - metals:

When energy bands are formed in solids, different arrangements are possible,
depending on the initial distribution of electrons within the quantum states of the
individual atoms.  For example, the 4s subshell in copper is only half full, since it
contains 1 valence electron.  Thus, there are empty states within this level.  In
contrast, magnesium contains 2 electrons in its 3s subshell (which is thus filled),
but when the individual Mg atoms form a solid, the s and p bands overlap,
producing available energy states near the top-most filled band.
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Electron propagation

Energy bands - semiconductors and insulators:
Notice in particular the two cases
shown on the right.

For these materials, there is a
forbidden gap between the occupied
valence bands and the unoccupied
conduction bands.  (Conduction
bands run throughout the metal and
account for electrical conductivity,
whereas valence bands correspond to
localized electrons).

Such materials are called either
semiconductors or insulators,
depending on the magnitude of the
forbidden energy gap.

Energy (thermal or optical) is required to 
excite a valence electron across the gap into 
the conduction band.
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Fermi level

“Way cool”...

Suppose we cool a material down to 0K (absolute zero).  The electrons will fill up
energy levels, starting with the lowest (1s), (consistent with the Pauli exclusion
principle), until all electrons are accounted for.  In this ground state configuration,
we can identify a highest filled level (and a lowest unoccupied level).  The energy
level corresponding to the highest occupied level (at 0K) is given a special name; it
is called the Fermi energy.

The Fermi energy is just a fancy way of identifying the separation, or boundary,
between occupied energy levels and unoccupied energy levels.  The position of the
Fermi energy is important, because it determines whether there are any nearby
unoccupied conduction states for electrons to drift from atom to atom.  If there are
no available conduction states, then no matter how many electrons there are,
conduction cannot take place and the electrons are localized.

(Think about a classroom in which every seat is occupied; there may be a lot of
students present, but none of them can move because there are no available seats.)
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Fermi level - in a bit more detail

Electronic conduction:

Core electrons (those in low-lying energy states) find it difficult to participate in
conduction because in order to move freely through the metal, they would have to
push past all the other electrons lying in higher energy states.  It would require a
lot of energy for this to happen; consequently, core electrons remain localized.

However, for those electrons near the top-most filled levels, only a little bit of
energy is needed to “push” them into unoccupied states, if there are available
states nearby (in terms of energy).  We refer to the density of states (DOS) as the
number of available energy states per unit volume.

If the DOS near the top-most filled energy level is high, then there are plenty of
places for electrons to become de-localized (or free) and drift throughout the
material.  However, if the DOS near the top-most filled band is low (or zero), then
there are few available states and the electrons remain bound to their respective
atoms.
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Conduction states

Electronic conduction:
The top figure illustrates what
happens when an electron occupying
a state near the Fermi energy in a
metal receives sufficient thermal
energy to be excited into a higher
energy state (e.g., in the conduction
band).  This electron now contributes
to the bulk electrical current.

The lower figure depicts the situation
in semiconductors and insulators,
where there is an energy gap between
the valence and conduction bands.
Much more energy must be imparted
to the electron in order for it to
overcome the barrier.
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Metal systems

Electrical conductivity of
metals and alloys:

Note how the resistivity increases (or how the 
conductivity decreases) with increasing solute 
concentration.  This is because the solute atoms
act as scattering sites, disrupting the otherwise 
regular periodicity of the lattice.  
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Semiconductors

From electrons and holes to cell phones and PDAs

Semiconductors form the backbone of our technological society

all microchip processors are based on applications of Si, Ge, and other IIIA-VA and
IIB-VIA compounds.  In addition, many devices used as sensors are also based on 
these materials.

What gives semiconductors their unique electrical behavior is the extreme sensitivity
(exponential dependence) to the presence of minute quantities of solute, which we 
refer to as dopants.

The next slide shows an example of how much the resistivity of Si changes upon 
addition of boron.  Make note of the solute concentration; we’re talking 13 parts 
per million (ppm) of boron; this is a fantastically small amount of additive, yet, it 
is enough to make the resistivity increase by over 4 orders of magnitude!
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Semiconductors

Effect of boron doping in silicon:

This is amazing!

Addition of only 13 ppm of B
to Si increases the resistivity
by several orders of
magnitude!

This means we have a way of
“fine-tuning” the electrical
properties of these materials
simply by doping.

How can this be?
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Semiconductors

The answer lies in the nature of the electronic structure of semiconductors
Let’s look at silicon as an example:

Undoped (intrinsic) Si: Si doped with P:

Each Si atom has 4 valence electrons which are covalently bonded to its nearest neighbors.

When a phosphorus atom is substituted, since is has 5 valence electrons, all of the covalent bonds are
satisfied and there is one electron left over.  This extra electron is loosely bound; we say that the P
doping introduces impurity states within the band gap, so it takes much less energy (on the order of a
few meV, or 0.01 eV) for this extra electron to be promoted into the conduction band than for the other
bound electrons.
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Semiconductors

Since the additional electron is loosely bound to
its parent atom, only a minute amount of
energy is needed to excite it into the conduction
band (~ 0.01 eV).  There, it can respond to an
applied electric field and drift through the
crystal.

The loosely bound electron forms a donor state,
and may reside only a few meV below the
conduction band edge:
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Semiconductors

Similar behavior is obtained by doping
with an element containing fewer valence
electrons than the solvent, or host
material.  Such is the case with boron
doping in silicon.

The B atom produces an electron
deficiency and results in formation of an
impurity state within the band gap, close
to the valence band.  Thermal excitation
of an electron from the valence band into
this acceptor state forms a defect in the
valence band, known as a hole.  The hole
is the active charge carrier and moves in
opposite sense as an electron in the
conduction band.
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Semiconductors

What happens as a semiconductor is heated
up?  As more and more electrons acquire
sufficient energy to overcome the band gap,
the semiconductor becomes a better
conductor of electricity.  This is one key
distinction between semiconductors and
metals; as metals heat up, their electrical
conductivity decreases.

The conductivity of a semiconductor is
described by an Arrhenius equation of the
form

Temperature effects:

kT
Eg

Ce 2
−

=σ

where Eg is the magnitude of the band gap,
k is Boltzman’s constant, and T is the absolute temperature.
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Solution:  If we know σ at one temperature, we can use this information to find the 
value of the constant, C, in the Arrhenius equation for conductivity,  

Then, we simply substitute this value back into the equation for the desired temperature :

Example problem

Problem:  If the room temperature (298K) conductivity of intrinsic silicon is 0.0009
(Ohm-m)-1 , estimate its conductivity at 150oC (= 423K).

kT
Eg

Ce 2
−

=σ

Starting with the given room temperature data:
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Appendix -
useful electrical units information
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