MSE 383, Unit 2-1

Joshua U. Otaigbe Iowa State University Materials Science & Engineering Dept.

Polymerization Methods

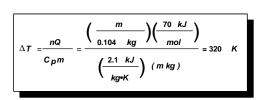
- Bulk
- Solution
- Emulsion
- Suspension
- Heat of reaction must be removed otherwise explosion may occur. (critical problem in bulk)
- Get large surface to volume of reacting monomer in solution, emulsion & suspension

Bulk Polymerization

- Reaction is carried out in the absence of solvent, diluent, or other materials
- Useful for epoxy, ethylene, MMA
- Heat removal is critical to avoid formation of explosive compounds

Example of Bulk Polymerization

- free radical (addition) polymerization of ethylene (narrow tubular reactors are used to facilitate heat removal)
- Ethylene gas + Oxygen (trace) @ T=200°C & 1500 atm.


Advantages of Bulk Polymerization

- High yield which depends on reactor volume
- Very high purity product formed
- Adaptable to copolymerization with other compatible comonomers (vinyls)

Monomer	Chemical Structure
Ethylene	CH2=CH2
Tetrafluoroethylene	CF ₂ =CF ₂
Butadiene	CH2=CH-CH=CH2
Isoprene	CH_3 $CH_2 = C - CH = CH_2$
Chloroprene	CI CH2=C-CH=CH2
Styrene	CH2=CH
Vinyl chloride	CI CH ₂ =CH
Vinylidine chloride	$CH_2 = C$
Vinyl acetate	OCOCH3 CH2=CH
Acrylonitrile	CN CH ₂ =CH
Acrylic acid	COOH CH2=CH
Methyl methacrylate	СООСН ₃ СН ₂ ==С СН ₃
Methyl acrylate	СООСН ₃ СН ₂ =СН

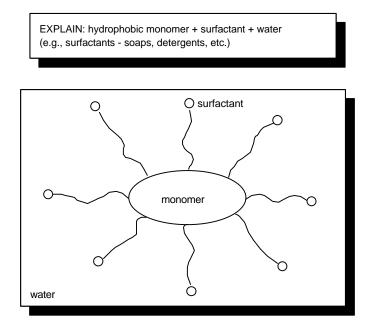
Solution Polymerization

- Reaction is carried out in the presence of <u>inert</u> solvent & initiator (20% monomer + 80% solvent typical)
- Useful for polystyrene i.e., 20% styrene + 80% Benzene + initiator
- Get temperature rise without solvent. For e.g.:

• With solvent, C_p is same: >> large reduction in heat generated

$$\Delta T = \frac{nQ}{C_p m} = \frac{\left(\frac{0.2 \ m}{0.104 \ kg}\right) \left(\frac{70 \ kJ}{mol}\right)}{\left(\frac{2.1 \ kJ}{kg \cdot K}\right) \ (m \ kg \)} = 64 \ K$$

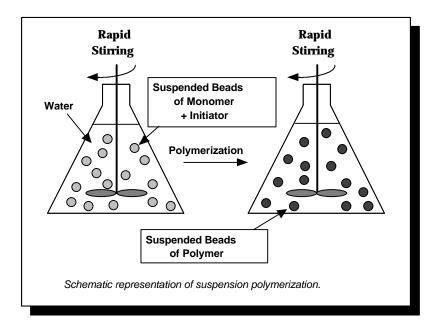
Advantages of Solution Polymerization


- Very useful for polymers used as solutions (e.g. lacquers, paints)
- Better heat control

Disadvantages of Solution Polymerization

- Potential toxicity, flammability and environmental pollution (<u>VOC</u>) of solvents
- Polymer product contains solvent impurities
- Yield is significantly lower than in bulk polymerization
- Expensive due to additional solvent costs

Emulsion Polymerization


- Reaction is carried out in monomer
 >> Water emulsion phase (or droplet or Micelle)
 - >> More environmentally safe

- Reaction occurs in the small droplets (or micelles)
- Role of water is that of a heat sink
- Product is marketed as polymer-water emulsions [e.g. water-borne paints, adhesives (white glue), etc.]
- Coagulating agents and/or heating used to separate water from polymer
- Surfactant impurity likely in polymer >> overhead

Suspension Polymerization

- Reaction is carried out in monomer
- Water dispersions but not stabilized with surfactant
- Therefore constant agitation is a must
- Particle size of polymer depends on droplet size and rate of agitation
- Relative to emulsion process:
 - >> Constant stirring required
 - >> Easier separation of water from polymer
 - >> No surfactant impurities in polymer

Polymerization Processes for Commercial Polymers

Polymer	Process
LDPE	Bulk
HDPE	Solution
PP	Solution
PS	Bulk; Suspension
PC	Bulk
PMMA	Bulk; Suspension
PVC	Emulsion; Suspension
PET	Bulk
PA (Nylons)	Bulk
PIsoP	Solution
PCR	Emulsion
SBP	Emulsion
PF	Solution
PTFE	Suspension

End of Lecture