Bioabsorbable Soy Protein Plastic Composites: Eject of Polyphosphate Fillers on
Water Absorption and Mechanical Properties
Joshua U. Otaigbe, and Daniel O. Adams
Abstract
The use of synthetic and natural bioabsorbable plastics has been severely limited due to their low stiffness and strength properties as well as their strong tendency to absorb moisture. This research focused on the development of bioabsorbable polyphosphate filler/soy protein plastic composites with enhanced stiffness, strength, and water resistance. Bioabsorbable polyphosphate fillers, biodegradable soy protein isolate, plasticizer, and adhesion promoter were homogenized and compression-molded. Physical, mechanical, and water absorption testing was performed on the molded specimens. Results showed improvements in stiffness, strength, and water resistance with increasing polyphosphate filler content up to 20% by weight. Application of a coupling agent produced further mechanical property enhancements and a dramatic improvement in water resistance, interpreted by an interracial chemical bonding model. Examination of the fracture surfaces of the materials revealed that the addition of the polyphosphate fillers changed the failure mode from brittle to pseudo-ductile. These results suggest that these materials are suitable for many load-bearing applications in both humid and dry environments where current soy protein plastics are not usable.
|